On the Calculation of Electric Field Gradients in Layered Compounds

Tilman Butz

Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstr. 5, D-04103 Leipzig Reprint requests to Prof. T. B.; E-mail: butz@physik.uni-leipzig.de

Z. Naturforsch. **57 a,** 518–522 (2002); received April 9, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

An analytical formula is derived for the electric field gradient (EFG) of a thin slab with an arbitrary charge density in the x-y-plane without z-dispersion, based on its Fourier expansion. It turns out that the EFG is dominated by the leading Fourier-coefficients for thin slabs and reduces to a contact-term proportional to the charge density at the nucleus in the truly two-dimensional case. An extension to charge density distributions which are factorizable into a function f(x, y) and g(z) is given with an example for a Gaussian g(z). The consequences for EFGs in layered compounds such as TaS₂ and TaSe₂ are discussed.

Key words: Electric Field Gradients; Layered Compounds.